212 research outputs found

    Project 8: Precision electron specroscopy to measure the mass of the neutrino

    Get PDF
    The Project 8 Collaboration is exploring a new technique for the spectroscopy of medium-energy electrons (∼ 1 - 100 keV) with the ultimate goal of measuring the effective mass of the electron antineutrino by the tritium endpoint method. Our method is based on the detection of microwave-frequency cyclotron radiation emitted by magnetically trapped electrons. The immediate goal of Project 8 is to demonstrate the utility of this technique for a tritium endpoint experiment through a high-precision measurement of the conversion electron spectrum of ^(83)mKr . We present concepts for detecting this cyclotron radiation, focusing on a guided wave design currently being implemented in a prototype apparatus at the University of Washington

    Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation

    Get PDF
    It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay end point, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments

    HIV RNA Screening Reduces Integrase Strand Transfer Inhibitor Resistance Risk in Persons Receiving Long-Acting Cabotegravir for HIV Prevention

    Get PDF
    BACKGROUND: The HPTN 083 trial demonstrated that long-acting cabotegravir (CAB-LA) was superior to tenofovir-disoproxil fumarate/emtricitabine for human immunodeficiency virus (HIV) preexposure prophylaxis (PrEP). Integrase strand transfer inhibitor (INSTI) resistance-associated mutations (RAMs) were detected in some participants with HIV infection. We used a low viral load INSTI genotyping assay to evaluate the timing of emergence of INSTI RAMs and assessed whether HIV screening with a sensitive RNA assay would have detected HIV infection before INSTI resistance emerged. METHODS: Single-genome sequencing to detect INSTI RAMs was performed for samples with viral loads <500 copies/mL from 5 participants with previously identified INSTI RAMs and 2 with no prior genotyping results. RESULTS: Major INSTI RAMs were detected in all 7 cases. HIV RNA testing identified infection before major INSTI RAMs emerged in 4 cases and before additional major INSTI RAMs accumulated in 1 case. Most INSTI RAMs were detected early when the viral load was low and CAB concentration was high. CONCLUSIONS: When using CAB-LA PrEP, earlier detection of HIV infection with a sensitive RNA assay may allow for earlier treatment initiation with the potential to reduce INSTI resistance risk. Further studies are needed to evaluate the value and feasibility of HIV RNA testing with CAB-LA PrEP

    Cranial Pathologies in a Specimen of Pachycephalosaurus

    Get PDF
    . The specimen features two large oval depressions on the dorsal surface, accompanied by numerous circular pits on the margin and inner surface of the larger depressions.In order to identify the origin of these structures, computed tomography (CT) data and morphological characteristics of the specimen are analyzed and compared with similar osteological structures in fossil and extant archosaurs caused by taphonomic processes, non-pathologic bone resorption, and traumatic infection/inflammatory origins. The results of these analyses suggest that the structures are pathologic lesions likely resulting from a traumatic injury and followed by secondary infection at the site.The presence of lesions on a frontoparietal dome, and the exclusivity of their distribution along the dorsal dome surface, offers further insight into frontoparietal dome function and supports previously hypothesized agonistic behavior in pachycephalosaurids

    Search for invisible modes of nucleon decay in water with the SNO+ detector

    Get PDF
    This paper reports results from a search for nucleon decay through invisible modes, where no visible energy is directly deposited during the decay itself, during the initial water phase of SNO+. However, such decays within the oxygen nucleus would produce an excited daughter that would subsequently deexcite, often emitting detectable gamma rays. A search for such gamma rays yields limits of 2.5×1029  y at 90% Bayesian credibility level (with a prior uniform in rate) for the partial lifetime of the neutron, and 3.6×1029  y for the partial lifetime of the proton, the latter a 70% improvement on the previous limit from SNO. We also present partial lifetime limits for invisible dinucleon modes of 1.3×1028  y for nn, 2.6×1028  y for pn and 4.7×1028  y for pp, an improvement over existing limits by close to 3 orders of magnitude for the latter two
    corecore